Monatshefte für Chemie 107, 893-906 (1976) © by Springer-Verlag 1976

Schwingungsspektren und Kraftkonstanten von Hexamethyldisilan, Hexaphenyldisilan und 1,1,1-Trimethyl-2,2,2-triphenyldisilan

Von

Friedrich Höfler

Abteilung für Spektrochemie, Institut für Anorganische Chemie, Technische Universität Graz, Österreich

(Eingegangen am 16. Januar 1976)

Vibrational Spectra and Force Constants of Hexamethyldisilane, Hexaphenyldisilane, and 1,1,1-Trimethyl-2,2,2-triphenyldisilane

The Raman and infrared spectra of $(CH_3)_3SiSi(CH_3)_3$ (I), $(CD_3)_3SiSi(CD_3)_3$, $(C_6H_5)_3SiSi(C_6H_5)_3$ (II), $(CH_3)_3SiSi(C_6H_5)_3$ (III), and $(CD_3)_3SiSi(C_6H_5)_3$ are reported. Assignments are based on symmetry G_{36}^+ (free internal rotation) for I, D_{3d} for II, and C_{3v} for III. Normal coordinate treatment has been done using some simplifications in the phenyl coordinates. The SiSi stretching force constant in I amounts to 1,65 N/cm. In compounds II and III strong vibrational coupling is elucidated by *PED* calculations.

Im Zuge unserer Berechnungen von Schwingungsformen und Kraftfeldern einheitlich substituierter Disilane Si₂ X_6 (X = Halogen^{1, 2}, OCH₃³, NCO⁴) im Rahmen des Valenzkraftmodells konnten wir ausgeprägte kinetische Kopplungen mehrerer innerer Koordinaten in den längerwelligen Normalschwingungen aufzeigen. Die Bestimmung der SiSi-Valenzkraftkonstante gestaltet sich aber schwierig, zumal in die Potentialfunktion stets auch Energieterme mit Koordinaten aufgenommen werden müssen, die zumindest durch eine Valenzkoordinate getrennt sind. Nach vorbereitenden Schwingungsanalysen an einigen Verbindungen mit Trimethylsilyl⁵- und Triphenylsilylgruppen⁶ umfaßt die vorliegende Arbeit nun spektroskopische Daten und Berechnungen von (CH₃)₃SiSi(CH₃)₃ und (CD₃)₃SiSi(CD₃)₃, (CH₃)₃SiSi(C₆H₅)₃ und (CD₃)₃SiSi(C₆H₅)₃ sowie (C₆H₅)₃SiSi(C₆H₅)₃. Obwohl Hexamethyldisilan⁷ und Hexaphenyldisilan⁸ mit zu den am längsten bekannten Organosiliciumverbindungen zählen, wurden ihre Schwingungsspektren noch nicht zufriedenstellend interpretiert. Im Falle von Hexamethyldisilan sind ältere Angaben über sein Raman-⁹⁻¹¹ und IR-Spektrum¹⁰ zum Teil durch neuere Messungen¹²⁻¹⁴ als korrigiert anzusehen. Normalkoordinatenanalysen existieren nach dem *Urey—Bradley*-Modell¹⁵ und nach vereinfachten Valenzkraftansätzen unter Zusammenfassung der Methylgruppen zu Punktmassen^{11, 13}. Über Hexaphenyldisilan finden sich in der Literatur lediglich IR-Daten (> 300 cm⁻¹)^{12, 16}, über 1,1,1-Trimethyl-2,2,2-triphenyldisilan Raman- und IR-Frequenzen (> 300 cm⁻¹)¹²; die vorgeschlagene Zuordnung für die SiSi-Valenzschwingungen in diesen beiden Verbindungen ist fehlerhaft.

Hexamethyldisilan

Die von uns vermessenen Raman- und IR-Spektren des $(CH_3)_3SiSi(CH_3)_3$ stimmen im wesentlichen mit jenen von Schrader¹⁴ überein. Im längerwelligen Bereich konnten wir die IR-Bande um 250 cm⁻¹ als Dublett auflösen und zusätzlich eine sehr schwache Bande bei 282 cm⁻¹ auffinden. Im Literaturspektrum¹⁴ gehen die sehr schwachen IR-Absorptionen bei 331 und 1060 cm⁻¹ auf geringfügige Beimengungen von Hexamethyldisiloxan zurück. Zum Zwecke einer genaueren Berechnung der Kraftkonstanten haben wir (CD₃)₃SiSi(CD₃)₃ erstmals dargestellt und spektroskopiert. Die gemessenen Frequenzen von h_{18} - und d_{18} -Derivat sind, nach CH/CD - und Gerüstschwingungen getrennt, in den Tab. 1 und 2 aufgeführt.

Tabelle 1. CH- und CD-Valenz- und Deformationsschwingungen von (CH₃)₃SiSi(CH₃)₃ und (CD₃)₃SiSi(CD₃)₃ [v Raman/IR in cm⁻¹]

$(CH_3)_3SiSi(CH_3)_3$

 $\nu_{as} {\rm CH}_3~2951~m/2952~{\rm s},~\nu_s {\rm CH}_3~2892~{\rm s},~p/2894~m,~\delta_{as} {\rm CH}_3~1414~{\rm vw}/1410~{\rm w}, \\ \delta_s {\rm CH}_3~1256~{\rm vw},~p/1255~{\rm sh},~\delta_s {\rm CH}_3~1244~{\rm vw}/1244~{\rm s};~{\rm ferner}~{\rm Kombinations} \\ {\rm ton}~(636~+~248)~883~{\rm vw}/{\rm ---}.$

$(CD_3)_3SiSi(CD_3)_3$

 $v_{as}CD_3$ 2212 m/2206 s, v_sCD_3 2116 s, p/2112 m, $\delta_{as}CD_3$ 1030 vw/1030 w, δ_sCD_3 1004 w/1005 vw, sh, δ_sCD_3 988 m, p/989 s; ferner 762 vw/---.

Die Zuordnung der Gerüstfrequenzen ist naturgemäß mit Symmetrieüberlegungen verbunden. Bei einem starren Molekül X_3 SiSi X_3 ist eine Stellung der Substituenten X auf Lücke (Punktgruppe D_{3d}) oder auf Deckung (D_{3h}) zu diskutieren. Die beiden Formen unterscheiden sich in ihren Schwingungsspektren, da die Abzähl- und Auswahlregeln für den D_{3d}-Typ 6 Raman-aktive und 5 IR-aktive Schwingungen

		Tabelle 2.	Schwingung	ısspekt	.um)) uoa	3H3)3S	iSi(CH ₃) ₃ und (CD ₃	$_3)_3 \mathrm{SiSi}(\mathrm{CD}_3)_3 < 85$	0 cm ⁻¹
IR	h ₁₈ Raman	IR	d ₁₈ Raman	A_{1s}	bor. A4s	$(-d_{18})$ \mathbf{E}_{2d}	E1d	Zuordnung	-h18	PEV - d_{18}
-		$\begin{bmatrix} 709 \text{ vs} \\ 674 \text{ vs} \end{bmatrix}$	707 w	701	678			$ ho^{1}CH_{3}/CD_{3}$ (A _{1s}) $ ho^{1}CH_{3}/CD_{3}$ (A _{4c})	$S_1 0.91$ $S_6 0.97$	$S_1 0, 46, S_2 0, 19, S_3 0, 24$ $S_5 0.68, S_2 0, 13$
833 vs	831 vvw	$\begin{cases} 615 \text{ sh} \\ 615 \text{ sh} \end{cases}$	616 m 616 m		;	619	610	$\rho^{3}CH_{3}/CD_{3} (E_{2d})$	S ₉ 0,94	S ₉ 0,53, S ₁₀ 0,40
ם בייי	6 H E					572	010	$\rho^{2}CH_{3}/CD_{3}$ (E _{2d})	$S_8 0.97$	0.97 Dis 0.17 Dis 0.17 Dis 0.97
MA 007	105 W						570	p ² CH ₃ /CD ₃ (E _{1d})	S_{13} 0,94	S_{13}^{-1} 0,96
$720 \mathrm{s}$		709 vs					109	vasSiC ₃ (E _{1d})	$S_{15} 0.91$	$S_{15} 0.87, S_{14} 0.18$
688 s	687 m	674 vs	-			675		$v_{as}SiC_3 (E_{2d})$	$S_{10} 1,07$	$S_{10} 0, 71, S_9 0, 36$
	636 vs, p		562 vs, p	562				$v_{s}SiC_{3}$ (A _{1s})	$S_{3} 0.89$	$S_3 0,68, S_1 0,29$
605 s		545 w			545			$v_{\rm s} { m SiC}_3 ({ m A}_{4 m s})$	$S_{6} 1,02$	$S_6 0, 89, S_5 0, 12$
	403 vs, p		366 vs, p	369				vSiSi (A _{1s})	$S_2 0,72, S_4 0,27$	$S_2 0,72, S_4 0,16$
282 vw		1			245			$\delta_{s}SiC_{3}(A_{4s})$	$S_7 1,00$	$S_7 0.94$
$252~{ m sh}$	248 m		$220~{ m m}$			226		$\delta_{as} SiC_3 (E_{2d})$	$S_{11} 1,09$	S_{11} 0,90, S_{12} 0,40
$243 \mathrm{~s}$		$210~{ m m}$					214	$a_{as}SiC_3 (E_{1d})$	$S_{16} 0.90$	$S_{16} 0.87$
220 m	$215~{ m sh}$		$200 \mathrm{~sh}$			197		pSiC ₃ (E _{2d})	$S_{12} 0.99$	$S_{12} 0,66, S_{11} 0,16$
	180 vs, p	157 vvw	157 vs, p	158				$\delta_{s}SiC_{3} (A_{1s})$	$S_4 0,70, S_2 0,16$	$S_4 0, 79, S_2 0, 11$
105 vw							89	pSiC ₃ (E _{1d})	$S_{17} 1, 11$	S_{17} 1,10

F. Höfler:

mit Alternativgebot und für den D_{3h}-Typ 9 Raman-aktive und 5 IR-aktive Schwingungen mit 3 Koinzidenzen fordern:

 $D_{3d}: \Gamma = 3 A_{1g}(Ra, p) + A_{1u}(v) + 2 A_{2u}(IR) + 3 E_g(Ra) + 3 E_u(IR)$

 $D_{3h}: \Gamma = 3 A_1{'}(Ra, p) + A_1{''}(v) + 2 A_2{''}(IR) + 3 E''(Ra) + 3 E'(Ra, IR)$

Hexamethyldisilan läßt sich jedoch nicht mit einem dieser Modelle korrelieren*.

Über die Größe der Rotationsbarriere (V) um eine SiSi-Bindung ist noch relativ wenig bekannt, sie dürfte aber niedriger liegen als bisher abgeschätzt (1 kcal/Mol)¹⁷; eine neuere Messung an Si₂F₆ ergab $V \approx 0.6$ kcal/Mol¹⁸. Man sollte daher auch den Grenzfall freier interner Rotation ins Auge fassen. Das für derartige "nicht-starre" Moleküle entwickelte Konzept^{19, 20} führt bei Si₂X₆ auf die Permutations-Inversions-Gruppe G₃₆; die für die Auswahlregeln heranzuziehende Doppelgruppe G⁺₃₆ läßt 9 Raman- und 8 IR-Linien mit 6 Koinzidenzen erwarten:

$$G_{36}^+: \Gamma = 3 A_{1s} (Ra, p) + 2 A_{4s} (IR) + 3 E_{2d} (Ra, IR) + 3 E_{1d} (Ra, IR)$$

Von entscheidender Bedeutung ist demnach die Beobachtbarkeit der entarteten Gerüstschwingungen und hievon insbesondere der Valenzschwingungen.

Hexamethyldisilan weist im IR-Spektrum im Bereich der $v_{as}SiC_3$ tatsächlich zwei Banden etwas unterschiedlicher Intensität bei 688 und 720 cm⁻¹ auf, die durch Perdeuterierung um 11—14 cm⁻¹ abgesenkt werden (Tab. 2). Eine von *Fontal*¹³ vorgeschlagene Zuordnung von ρ CH₃ nach 720 cm⁻¹ erscheint durch die Isotopendaten widerlegt. Das Raman-Spektrum der h_{18} -Verbindung zeigt nur eine Bande (687 cm⁻¹), die mit der tieferen (und schwächeren) IR-Absorption koinzidiert. Im d_{18} -Derivat fällt auch die totalsymmetrische Rocking-Schwingung ρ CD₃ in diesen Bereich. Wir ordnen die schwache Raman-Linie bei 707 cm⁻¹ dieser Schwingungsform zu und nehmen gleichzeitig an, daß die beiden $v_{as}SiC_3$ -Schwingungen von (CD₃)₃SiSi(CD₃)₃ ähnlich wie bei (CD₃)₃SiCl und [(CD₃)₃Si]₂O⁵ eine äußerst geringe Raman-Intensität besitzen**. Das verdoppelte Auftreten von $\delta_{as}SiC_3$ im IR-Spektrum (243/252 cm⁻¹) wurde bereits erwähnt. Die Gerüstschwingungen der A-Rassen befolgen in h_{18} - und d_{18} -Verbindung

^{*} Die von einigen Autoren^{11, 13, 15} diskutierte Gruppe D'_{3h} , die die gleichen Auswahlregeln wie D_{3h} bedingt, ist eine Untergruppe von G_{36}^{+22} .

^{**} Andererseits verzeichnet die mit $v_{as}SiC_3$ verkoppelte ρ^3CD_3 -Schwingung (um 616 cm⁻¹) gegenüber ρ^3CH_3 stets eine Zunahme von Raman-Intensität.

gleichfalls die Auswahlregeln der Gruppe G_{36}^+ , so daß wir aus diesen Meßergebnissen auf eine weitgehend freie Rotation um die zentrale SiSi-Bindung schließen.

Es sei noch hinzugefügt, daß in Hexamethyldisilan die Substituenten $X = CH_3$ ihrerseits wieder Rotoren mit einer aus Literaturdaten²¹ abzuschätzenden Rotationsbarriere um die SiC-Bindung von etwa 1600 cal/Mol darstellen. Könnte man auch diese Rotationen als nahezu unbehindert betrachten, so würde sich der Umfang des Problems beträchtlich erhöhen und es ergäbe sich eine PI-Gruppe der Ordnung 8748.

In den Normalkoordinatenanalysen wurde die höchstsymmetrische Stellung der Methylgruppen angenommen; die CH-, SiC- und SiSi-Bindungsabstände wurden mit 109, 187 und 234 pm eingesetzt, alle Bindungswinkel betrugen 109°28'. Bei der Aufstellung der G-Matrix wurden die von der wenig behinderten internen Rotation herrührenden Coriolis-Terme weggelassen²², so daß sich eine Diagonalisierung der (71×71) -Matrix in 6 Blöcke ergab, von denen 2 zu inaktiven Rassen gehören. Die verbleibenden 4 betreffen die Rassen A_{1s}, A_{4s}, E2d und E1d und besitzen die Dimensionen 8, 7, 12 und 12. In weiteren Vereinfachungsschritten wurden zunächst die CH3-Torsionen unberücksichtigt gelassen, da sie nicht beobachtet werden konnten, und sodann die CH-(CD-)Valenz- und Deformationskoordinaten nach Durchführung der erforderlichen Korrekturen in den verbleibenden G-Elementen abgespalten. In einer früheren Arbeit⁵ war gezeigt worden, daß dies ohne nennenswerte Verfälschung von Gerüstvalenzkraftkonstanten zulässig ist; sehr wohl müssen aber die o CH₃(CD₃)-Koordinaten berücksichtigt werden, die speziell in der Perdeuteroverbindung zum Teil mit Streckschwingungen des Gerüstes gekoppelt sind.

Die Schwingungsberechnungen wurden somit mit 4 A_{1s}- (S₁—S₄), 3 A_{4s}- (S₅—S₇), 5 E_{2d}- (S₈—S₁₂) und 5 E_{1d}-Schwingungen (S₁₃—S₁₇) durchgeführt. Die zugehörigen Symmetriekoordinaten (S_i) entsprechen denen einer D_{3d}-Aufstellung; ihre Reihenfolge wurde analog zu Trimethylchlorsilan⁵ gewählt. Die expliziten Ausdrücke für S_i können unschwer aus⁵ unter Anwendung von Linearkombinationsregeln (vgl. ²³) erhalten werden, so daß auf ihre Angabe verzichtet werden kann. Im Verlaufe der Rechnungen nach einem modifizierten Valenzkraftmodell wurde in bewährter Weise^{3, 5} die Beeinflussung der berechneten d_{18} -Isotopenverschiebung durch einzelne Nebendiagonalelemente von solchen Kraftkonstantenmatrizen untersucht, die die Frequenzen von (CH₃)₃SiSi(CH₃)₃ genau wiedergaben. Der geänderten Anharmonizität wurde durch Anbringung einer Korrekturgröße von 0,01 N/cm bei jedem F (ρ CH₃) Rechnung getragen. Die beste Übereinstimmung mit

F. Höfler:

den gemessenen Frequenzen der d_{18} -Verbindung wurde mit den in Tab. 3 aufgeführten Kraftkonstanten erzielt. Die SiSi-Valenzkraftkonstante ist mit 1,65 N/cm etwas niedriger als in Si₂H₆ (1,73 N/cm)²⁴; ihre Fehlerbreite kann mit \pm 0,1 N/cm angegeben werden. Die SiC-Valenzkraftkonstante ist etwa gleich groß wie in Trimethylchlorsilan. Von den Winkelkraftkonstanten am Si-Atom nimmt, gegenüber

	$\mathbf{A_{1s}}$	$\mathbf{A_{4s}}$		E _{2d}	E _{1d}
$\overline{\mathrm{F}\left(\mathrm{p}^{1}\mathrm{CH}_{3} ight)^{\mathrm{a}}}$	0,320	0,334	F (p ² CH ₃) ^a	0,321	0,320
$\mathbf{F}(\mathbf{v}\mathbf{S}\mathbf{i}\mathbf{S}\mathbf{i}) = \mathbf{f}(\mathbf{S}\mathbf{i}\mathbf{S}\mathbf{i})$	1,65		$F(\rho^{3}CH_{3})^{a}$	0,356	0,367
$F(v_sSiC_3)$	3,15	2,83	$F(v_{as}SiC_3)$	2,75	2,91
$F (\delta_s SiC_3)^{b}$	0,198	0,211	$F (\delta_{as} SiC_3)^{b}$	0,211	0,173
$F(\rho^1 CH_3/\nu SiSi) -$	- 0,02		$F(\rho SiC_3)^{b}$	0,178	0,140
$F(\rho^1 CH_3/\nu_s SiC_3)$	0,02	0	$F(\rho^2 CH_3/\nu_{as} SiC_3)$	0,05	0
$F(\rho^1 CH_3/\delta_s SiC_3)$.	-0,03 -	-0,05	$F(\rho^{3}CH_{3}/\nu_{as}SiC_{3})$ -	-0,07 -	-0,02
$F(vSiSi/v_sSiC_3)$	0,10		$F(\rho^3 CH_3/\delta_{as} SiC_3)$	0,05	0,02
$F(vSiSi/\delta_sSiC_3)$	0,10		$F(\rho^{3}CH_{3}/\rho SiC_{3})$	0	0,03
$F(v_sSiC_3/\delta_sSiC_3)$	0,10	0,10	$F(v_{as}SiC_3/\delta_{as}SiC_3)$ -	-0,15 -	-0,15
			$F(v_{as}SiC_3/\rho SiC_3)$	$0,\!15$	0,15
			$F\left(\delta_{as}SiC_3/\rho SiC_3\right)$	0,045	0,030
f (SiSi)		1,65	F (δ _{as} SiC ₃), Mittel		0,192
f (SiC)		2,88	$F(\rho SiC_3)$, Mittel		0,159
f (SiC/SiC)		0,053	$F (\delta_s SiC_3), Mittel$		0,205

Tabelle 3. Kraftkonstanten des Hexamethyldisilans (N/cm)

^a Bezogen auf r (CH).

^b Bezogen auf r (SiC).

 $(CH_3)_3SiCl^5$, F ($\delta_{as}SiC_3$) auf Kosten von F (ρ SiC₃) zu. Wie für andere Trimethylsilylverbindungen gilt auch für Hexamethyldisilan, daß die Wechselwirkungsglieder zwischen ρ -Methyl- und SiSi- bzw. SiC-Koordinaten nicht bei null gehalten werden können, sondern daß für sie kleine negative oder positive Werte einzusetzen sind⁵. Wie in den Hexahalogendisilanen^{1, 2} äußern sich Wechselwirkungskraftkonstanten von Koordinaten an zwei verschiedenen Si-Atomen in unterschiedlichen Werten entsprechender Hauptdiagonalkraftkonstanten in den beiden A- bzw. E-Rassen. Der Charakterisierung der Schwingungen durch die jeweils wichtigste Koordinate sind in Tab. 2 die *PEV*-Anteile zur Seite gestellt. In A_{1s} ist v SiSi schwach mit δ_s SiC₃ gekoppelt. In E_{2d} des (CD₃)₃SiSi(CD₃)₃ könnte die starke Kopplung von ν_{as} SiC₃ mit ρ^3 CD₃ ähnlich wie in Trimethylchlorsilan⁵ und Trimethylmethoxysilan²⁵ für die gegenüber den ρ CH₃-Schwingungen erhöhte Raman-Intensität von ρ^3 CD₃ verantwortlich sein.

1,1,1-Trimethyl-2,2,2-triphenyldisilan

Über die Lage der SiSi-Valenzschwingung in Phenyldi- und -cyclosilanen bestand zu Beginn unserer Untersuchungen noch keine Klarheit. In der Zwischenzeit sind, aufbauend auf den hier erzielten Ergebnissen, in anderem Zusammenhang Zuordnungen für Oktaphenyltrisilan²⁶ und perphenylierte Cyclosilane der Ringgröße 4-6^{6, 27} mit-

Tabelle 4. Raman- $(< 1200 \text{ cm}^{-1})^*$ und IR-Spektren von $(CH_3)_3SiSi(C_6H_5)_3$ und $(CD_3)_3SiSi(C_6H_5)_3 \text{ cm}^{-1}$

$(CH_3)_3SiSi(C_6H_5)_3$

IR 3082 vw, 3062 w, 3055 w, 3039 w, 3020 w, 3010 vw, 2995 w, 2905 w, 2895 vw, 1586 vw, 1480 w, 1426 m, 1405 w, 1331 vw, 1309 vw, 1295 vw, 1261 m, 1251 ms; Raman/IR 1189 m/1186 vw, 1156 ms/1157 vw, --/1115 sh, 1100 ms/1102 vs, ---/1070 w, 1030 s/1031 m, 1003 vvs/1000 m, --/971 vw, 918 vw/918 w, --/860 sh, 851 vw/852 vs, ---/835 vs, --/790 sh, 742 w/742 vs, ---/732 s, 700 m/698 vs, 681 s/679 s, 633 ms, p/633 vw, 616 ms/619 w, 522 ms, p/521 s, 494 vw/492 s, 438 m/431 m, 293 ms, p/293 m, --/247 w, 237 vs/232 w, 203 vs, p/206 m, 170 s/170 vs, 81 s/--.

$(CD_3)_3SiSi(C_6H_5)_3$

IR 3082 vw, 3061 w, 3055 w, 3039 w, 3021 w, 2218 m, 2209 s, 2115 vw, 1586 vw, 1482 w, 1424 m, 1329 vw, 1303 vw, 1287 vw, 1260 w; Raman/IR 1190 m/1182 vw, 1158 ms/1154 vw, -/1110 sh, 1101 s/1100 vs, -/1066 m, 1031 s/1028 m, 1004 vvs/1003 sh, -/989 vs, 920 vw/917 vw, 855 vw/ 852 vw, -/790 w, 741 vw/741 vs, -/736 vs, -/715 sh, 708 m/705 sh, -/699 vs, 678 ms/678 m, -/648 vw, 620 ms/621 vw, 570 ms, p/570 w, -/544 vw, 510 ms, p/511 s, -/490 s, 438 m/442 sh, -/430 m, 273 ms, p/274 m, 237 vs, p/-, 191 vs/200 w, -/180 w, sh, 168 ms/-, -/127 vvw.

* Polarisationsmessungen an benzolischen Lösungen.

geteilt worden. Die von $Calas^{12}$ an $(CH_3)_3SiSi(C_6H_5)_3$ und $(C_6H_5)_3SiSi(C_6H_5)_3$ versuchsweise getroffenen Zuordnungen von ν SiSi zu Banden um 440 cm⁻¹ sind nicht haltbar, da diese Linien im Raman-Spektrum depolarisiert sind und auch in anderen Triphenylsilylverbindungen⁶ auftreten; sie sind in Näherung als " $\nu_{as}SiC_3$ " zu charakterisieren. Im Raman-Spektrum von 1,1,1-Trimethyl-2,2,2-triphenyldisilan (Tab. 4) findet man neben drei deutlich polarisierten Linien unter 300 cm⁻¹ auch eine intensive, polarisierte Bande bei 522 cm⁻¹, die als ν SiSi — verglichen mit 404 cm⁻¹ in Hexamethyldisilan — zunächst relativ hoch erschien.

Die Darstellung und Vermessung der 1,1,1-Trideuteromethylspecies (Tab. 4) sowie eine anschließende Schwingungsberechnung in

T GIRDON	anna ta ser con a man	ninoaraa ma (ma) wiyan	nnoa-læ renoerden bi	THE MANAGEMENT (CTT3) 3000 MANAGEMENT)3
\mathbf{F}_{ti}		${ m F}_{ij}$		${ m F}_{ij}$	
F ₁₁ (v Ring)	7,32	${ m F_{12}}$ (v ${ m Ring}/{ m 8}$ ${ m Ring})$	0,836	${ m F}_{45}~({ m vSiSi}/{ m v_sSiC_3})$	0,12
F_{22} (δ Ring)	1,1	F_{16} (v $Ring/v_sSiC_3$)	0,45	F_{46} (vSiSi/v _s SiC ₃)	0
F33 (p ¹ CH3) ^a	0,34	F_{18} (§ $Ring/v_sSiC_3$)	-0.07	F_{47} (vSiSi/ δ_s SiC ₃)	0,07
F_{44} (vSiSi)	1,95	F_{34} ($\rho^{1}CH_{3}/vSiSi$)	0,10	\mathbf{F}_{48} (vSiSi/ δ_{s} SiC ₃)	0
F_{55} (v _s SiC ₃)	3,08	F_{35} ($\rho^{1}CH_{3}/v_{s}SiC_{3}$)	0	F_{57} (v _s SiC ₃ / δ_s SiC ₃)	0,1
F_{66} (v _s SiC ₃)	3,18	F_{37} ($\rho^1 CH_3/\delta_s SiC_3$)	-0.07	F_{68} (v _s SiC ₃ / δ_s SiC ₃)	0,02
F_{77} ($\delta_s SiC_3$) ^b	0,18				
F_{88} ($\delta_{s}SiC_{3}$) ^b	0,19				
^a Bezogen a	out r (CH).				
^b Bezogen a	r (SiC).				

TT CLOCK FF7 ٠ 5 . ۶ ŀ 5 έ), Ē E

900

der totalsymmetrischen Rasse (A1) unter Verwendung der Koordinaten:

S_1	$ m v~C_6H_5$ -Ring	S_5	$\nu_s { m SiC}_3$	(methyl)
S_2	$\delta \mathrm{C_6H_5} ext{-Ring}$	S_6	$\nu_{s}{\rm SiC}_{3}$	(phenyl)
S_3	ρ ¹ CH ₃ /CD ₃	S_7	$\delta_s {\rm SiC}_3$	(methyl)
S_4	v SiSi	S_8	$\delta_s {\rm SiC}_3$	(phenyl)

erbrachten die gewünschte Klärung.

Im Berechnungsansatz wurde der Energiebeitrag der Methylgruppen somit wiederum durch Einbeziehung der Rocking-Koordinate

Tabelle 6. Frequenzen ($v_{ber,/beob.}$ in cm⁻¹), d₉-Verschiebungen ($\Delta v_{ber,/beob.}$ in cm⁻¹) und Potentialenergieverteilungen typischer A₁-Schwingungen von (CH₃)₃SiSi(C₆H₅)₃

ν	Δν	PEV
1101/1100	0/	$S_1 0,73, S_2 0,36, S_6 0,33$
673'/ 681	3,8/3	$S_1 0,32, S_2 0,25, S_6 0,15$
842/843*	139,9/128	$S_{3} 0,84$
516/522	13,2/ 11 *	$S_4 0,53, S_2 0,16, S_8 0,15$
635'/ 633	62,6/ 63	$S_5 0,88$
294/293	19,4/20	$S_7 0,42, S_6 0,25, S_2 0,17, S_4 0,14$
210/ 203	10,5/ 12	$S_7 0,42, S_6 0,23, S_8 0,16, S_2 0,13$
126/ —	5,1/	$S_8 0,62, S_7 0,20, S_4 0,16$

* Gemittelt.

o ¹CH₃/CD₃ berücksichtigt und die Kopplungsbeziehung symmetrischer Phenylringschwingungen mit den Schwingungen des SiC-Gerüstes mittels eines vereinfachten Phenvlersatzmodells²⁸ erfaßt. Die zu diesen Molekülteilen gehörigen Kraftkonstanten lassen sich innerhalb enger Grenzen von früheren Rechnungen übertragen^{5, 6}; die übrigen, im Sinne einer Anpassung an die beobachteten Frequenzdaten (Tab. 6) ermittelten Kraftkonstanten liegen ebenfalls in plausiblen Bereichen. Lediglich der Wert der SiSi-Valenzkraftkonstanten (1.95 N/cm) erscheint - auch in Hinblick auf die Ergebnisse am Hexaphenyldisilan - etwas zu hoch (Tab. 5). Tab. 6 belegt, daß sich die aufgefundenen Frequenzverschiebungen der einzelnen Schwingungen durch die Modellrechnung gut simulieren lassen. Die berechneten Isotopeneffekte sind mehrfach etwas höher als die gemessenen, da im schwingenden Molekül auch noch andere als die berücksichtigten Koordinaten kleinere kinetische Anteile übernehmen. Die Verteilung der potentiellen Schwingungsenergie zeigt tiefgreifende Kopplungszusammenhänge, die sich über das gesamte Molekül erstrecken, so z. B. eine Kopplung zwischen

 $\delta_8 SiC_3$ der Trimethylsilylgruppe mit "v_sSiC₃" der Triphenylsilylgruppe. Die Bande bei 522/511 cm⁻¹ besitzt tatsächlich den höchsten Anteil der SiSi-Valenzkoordinate (S₄); ihre hohe Lage wird zum Teil durch Kopplung mit $\delta_8 SiC_3$ (S₈) und $\delta C_6 H_5$ -Ring (S₂) verursacht. Bei den übrigen, in Tab. 4 angeführten Schwingungen handelt es sich um lagenkonstante Methyl- und Phenylschwingungen, deren Zuordnung sich analog Tab. 1 dieser Arbeit bzw. Tab. 1 von ²⁹ ergibt, sowie um asymmetrische Gerüstschwingungen der Trimethylsilyleinheit und um Si-Phenyl-Deformationen, deren Zuordnung ebenfalls unproblematisch ist⁵, ⁶.

Hexaphenyldisilan

Die strukturellen Befunde an $\operatorname{Si}(C_6H_5)_4^{30}$ machen bei Hexaphenyldisilan ebenfalls eine verdrillte Anordnung der Phenylgruppen wahrscheinlich. Die Raumerfüllung der sechs Ringe spricht für eine Stellung des Si₂C₆-Gerüstes auf Lücke (D_{3d}) und läßt eine Erschwerung der internen Rotation um die SiSi-Bindung vermuten. Die Meßergebnisse im längerwelligen Bereich unterstützen diese Annahme: unterhalb 700 cm⁻¹ ergeben sich nur wenige Raman/IR-Koinzidenzen (Tab. 7). Zur Zuordnung wichtiger Gerüstschwingungen wurde eine

Tabelle 7. Raman- (< 1600 cm⁻¹) und IR-Spektrum von $(C_6H_5)_3SiSi(C_6H_5)_3$

IR 3078 vw, 3060 w, 3039 w, 3022 vw, 3005 vw, 2990 vw; Raman/IR 1586 s/1584 vw, 1565 w/1564 vw, 1483 vw/1481 w, 1424 vw/1425 m, 1331 vw/ 1330 vw, 1308 vw/1304 vw, —/1258 vw, 1189 w/1191 w, 1157 w/1156 vw, 1128 vw/—, 1102 sh/1102 s, 1098 m/1098 s, 1068 vw/1064 vw, 1028 s/ 1027 w, 1000 vvs/998 w, 921 vw/920 vw, 860 vw/—, 750 w/—, 740 w/ 738 s, —/733 s, 704 w/—, —/694 vs, 680 w/—, —/672 w, 618 m/622 vw, 566 s/—, 495 w/—, 485 vvw/481 vs, 437 w/—, —/430 ms, 393 vw/—, -/354 s, -/291 vw, -/273 vw, 243 s/240 w, 231 vs/230 w, 208 vs/—, -/190 m, 180 vs/—, -/173 m, 83 sh/—, 68 vs/—.

Modellberechnung für D_{3d} -Symmetrie durchgeführt. Der Verfahrensweise bei anderen Triphenylsilylverbindungen⁶ folgend, wurden die Rassen A_{1g} und A_{2u} mit den nachstehenden Koordinaten erfaßt:

A_{1g} :	S_1	$ m v~C_6H_5$ -Ring	A_{2u} :	S_6	νC_6H_5 -Ring
	S_2	$\delta \mathrm{C_6H_5}$ -Ring		S_7	$\delta \mathrm{C_6H_5} ext{-Ring}$
	S_3	v SiSi		S_8	$\nu_s SiC_3$
	S_4	$\nu_s SiC_3$		S_9	$\delta_s SiC_3$
	S_5	$\delta_s SiC_3$			

Die zugehörigen Symmetriekraftkonstanten wurden zunächst übertragen und hernach in einem Iterationsschritt an die beobachteten Frequenzen angepaßt (Tab. 8). In der totalsymmetrischen Rasse A_{1g} ergibt sich, daß die gekoppelte SiSi-Valenzschwingung in $(C_6H_5)_3SiSi(C_6H_5)_3$ gegenüber $(CH_3)_3SiSi(C_6H_5)_3$ weiter ansteigt und der starken Raman-Linie bei 566 cm⁻¹ zuzuordnen ist*. Diese Bande kann als "Leitfrequenz" dienen. Die stark mit anderen Koordinaten

Tabelle 8. Symmetriekraftkonstanten (N/cm) und Potentialenergieverteilung symmetrischer Schwingungen von $(C_6H_5)_3SiSi(C_6H_5)_3$ (vber./beob. in cm⁻¹)

\mathbf{F}_{ii}	A_{1g}	A_{2u}	${ m F}_{ij}$	A_{1g}	A_{2u}
F (vRing)	7,32	7.32	F (vRing/δRing)	0,836	0,836
F (SRing)	1,1	1,1	$F(vRing/v_sSiC_3)$	0,5	0,5
F (vSiSi)	2,0		$F(\delta Ring/v_s SiC_3)$	0,05	-0.05
$F(v_sSiC_3)$	3,2	3,1	$F(vSiSi/v_sSiC_3)$	0,05	
F (SsSiC3) a	0,19	0,17	$F(vSiSi/\delta_sSiC_3)$	0,02	
* Bezog	gen auf r (S	iC).	$\mathbf{F}(\mathbf{v}_{s}\mathbf{S}1\mathbf{U}_{3}/\delta_{s}\mathbf{S}1\mathbf{U}_{3})$	0	0,04
$\nu\left(A_{1g}\right)$	F	PEV	$ u\left(\mathrm{A}_{2u} ight)$	PEV	7
1101/1098	$S_1 0,72, S_2$	20,36, S ₄ 0,	34 1093/1098	$S_6 0,74, S_7 0,3$	$37, S_8 0, 32$
683/ 680	$S_1 0,34, S_2$	$_{2}0,20, S_{4}0,$	16 668/ 672	$S_6 0, 32, S_7 0, 3$	$32, S_8 0, 13$
565/ 566	$S_3 0,58, S_5$	$_{2}0,24, S_{5}0,$	15 356/ 354	$S_8 0,41, S_9 0,3$	$32, S_9 0, 30$
233/ 231	$S_4 0, 50, S_2$	$_{2}0,30, S_{3}0,$	13 178/ 173	$S_9 0,70, S_8 0,1$	$5, S_7 0, 10$
82/83	S ₅ 0,78, S ₃	3 0,20			

vermischte gleichphasige $\nu_{\rm s} {\rm SiC}_3$ entspricht der sehr starken Raman-Bande bei 231 cm⁻¹; die schwache IR-Absorption an dieser Stelle kann durchaus auf eine Si-Phenyldeformationsschwingung der Benennung "u" zurückgehen⁶. Die Deformation $\delta_{\rm s} {\rm SiC}_3$ wird um 80 cm⁻¹ erwartet. Insgesamt entspricht das Frequenzmuster einmal mehr³¹ dem der entsprechenden Bromverbindung Si₂Br₆, deren drei A_{1g}-Schwingungen bei 562, 223 und 80 cm⁻¹ liegen; die Linienintensitäten sind allerdings unterschiedlich³².

Die typische IR-Bande des Hexaphenyldisilans bei 354 cm⁻¹ geht nach Tab. 8 auf die mit Ringschwingungen gekoppelte $\nu_s SiC_3$ -Gegentaktschwingung (A_{2u}) zurück. Schließlich entspricht auch das Auf-

^{*} Wegen der geringen Löslichkeit der Substanz konnten die Polarisationszustände der Raman-Banden nicht vermessen werden.

treten der entarteten Gerüstschwingungen den Auswahlregeln der Punktgruppe D_{3d}, da die gleichphasige "v_{as}SiC₃" nur im Ramanspektrum (437 cm⁻¹), die gegenphasige nur im IR-Spektrum beobachtet wird (430 cm⁻¹). Die Anführungszeichen sollen andeuten, daß es sich wiederum um gekoppelte Gruppenfrequenzen handelt. Auf die große Zahl der lagenkonstanten Phenylschwingungen sowie der Si-Phenyl-Deformationsschwingungen braucht nicht näher eingegangen zu werden^{6, 29}. Für den tiefen Frequenzbereich (< 200 cm⁻¹) müssen die Zuordnungen ("x", δ_8 SiC₃, δ_{as} SiC₃, ρ SiC₃) summarisch bleiben.

Die errechnete SiSi-Valenzkraftkonstante des Hexaphenyldisilans von 2,0 N/cm ist in erster Linie als Modellgröße anzusehen. Von vorhergehenden Berechnungen an einer Anzahl von Phenyl-Element-Verbindungen weiß man jedoch, daß die Valenzkraftkonstante von Bindungen des Zentralelements zu weiteren Substituenten durch die vereinfachte Berücksichtigung der Phenylgruppen nur wenig verändert wird^{6, 28}. In dem gegenüber Hexamethyldisilan erhöhten Wert von f (SiSi) könnten σ (SiSi)— π (C₆H₅)-Wechselwirkungen zum Ausdruck kommen, die kürzlich aus photoelektronenspektroskopischen Messungen an Phenylpentamethyldisilan postuliert worden sind³³.

Experimenteller Teil

Die Literaturvorschriften für $(CH_3)_3SiSi(CH_3)_3^{34}$ und $(CH_3)_3SiSi(C_6H_5)_3^{35}$ wurden für die Präparation kleinerer Mengen der CD₃-Species modifiziert. Zur Herstellung von (CD₃)₃SiSi(CD₃)₃ wird eine Ätherlösung von (CD₃)₃SiCl⁵ mit Na/K-Legierung versetzt und mehrere Stdn. zum Rückfluß erhitzt. Nach Abtrennen des Chloridniederschlages und destill. Aufarbeitung erfolgt die Feinreinigung mittels Gaschromatographie [Sdp. von (CH₃)₃SiSi(CH₃)₃ 112°]. Die Darstellung von (CD₃)₃SiSi(C₆H₅)₃ gelingt durch Titration der äther. Lösung von (CD₃)₃SiCl mit einer aus Hexaphenyldisilan und Li in Dimethoxyäthan bereiteten, tief gefärbten Lösung von Triphenylsilyllithium. Nach mehrstdg. Rühren und Rückflußerhitzen wird das Reaktionsgemisch auf Eis/HCl gegossen und mit Äther extrahiert. Nach Trocknen mit Na₂SO₄ und Abziehen des Äthers wird der Rückstand aus absol. Äthanol umkristallisiert [Schmp. von $(CH_3)_3SiSi(C_6H_5)_3$ 104°]. — $(C_6H_5)_3SiSi(C_6H_5)_3$ wurde nach ³⁶ über eine *Wurtz*-Reaktion aus Triphenylchlorsilan und Na in Xylol dargestellt. Zur Entfernung letzter NaCl-Reste und zur Erzielung eines gut kristallisierten Produktes wird das Rohprodukt mit Toluol extrahiert [Schmp. von $(C_6H_5)_3SiSi(C_6H_5)_3$ 360-362°].

Die Schwingungsspektren wurden bei Hexamethyldisilan an flüssigen, bei Trimethyltriphenyldisilan an festen und gelösten, bei Hexaphenyldisilan nur an festen Proben vermessen. Zur Aufnahme der IR-Spektren dienten die Gitterspektrometer Perkin-Elmer 325 und Beckman IR 11/IR 12 sowie das Beckman-RIIC-Interferometer; die Raman-Spektren wurden mit einem Spex-Ramalog mit He/Ne-Laseranregung registriert. Hexamethyl-, Hexaphenyl- und 1,1,1-Trimethyl-2,2,2-triphenyldisilan 905

Der Autor dankt Herrn Ing. W. Veigl (Graz) für experimentelle Mitarbeit, den Herren Prof. Dr. H. Bürger (Braunschweig/Wuppertal) und Prof. Dr. R. Mattes (Münster/W.) für die Aufnahme einiger IR-Spektren und dem Fonds zur Förderung der wissenschaftlichen Forschung (Wien), für apparative Unterstützung. Die Berechnungen wurden am Rechenzentrum der Techn. Univ. Graz durchgeführt.

Literatur

- ¹ F. Höfler, W. Sawodny und E. Hengge, Spectrochim. Acta **26** A, 819 (1970).
- ² F. Höfler, S. Waldhör und E. Hengge, Spectrochim. Acta 28 A, 29 (1972).
- ³ F. Höfler und E. Hengge, Mh. Chem. 103, 1513 (1972).
- ⁴ F. Höfler und W. Peter, Z. Naturforsch. 30 b, 282 (1975).
- ⁵ F. Höfler, Z. Naturforsch. 27 a, 760 (1972).
- ⁶ F. Höfler, Mh. Chem. 107, 705 (1976).
- ⁷ A. Bygdén, Ber. dtsch. chem. Ges. 45, 707 (1912).
- ⁸ W. Schlenk, J. Renning und G. Racky, Ber. dtsch. chem. Ges. 44, 1178 (1911).
- ⁹ H. Murata und M. Kumada, J. Chem. Phys. 21, 945 (1953).
- ¹⁰ C. C. Cerato, J. L. Lauer und H. C. Beachell, J. Chem. Phys. 22, 1 (1954).
- ¹¹ M. P. Brown, E. Cartmell und G. W. A. Fowles, J. Chem. Soc. **1960**, 506.
- ¹² R. Calas, A. Marchand, E. Frainnet und P. Gerval, Bull. Soc. Chim. Fr. 1968, 2478.
- ¹³ B. Fontal und T. G. Spiro, Inorg. Chem. 10, 9 (1971).
- ¹⁴ B. Schrader und W. Meier, Raman-IR-Atlas organischer Verbindungen. Weinheim: Verlag Chemie. 1974 (Spektrenblatt MSi-05).
- ¹⁵ H. Murata und K. Shimizu, J. Chem. Phys. 23, 1968 (1955).
- ¹⁶ L. A. Harrah, M. T. Ryan und C. Tamborski, Spectrochim. Acta 18, 21 (1962).
- ¹⁷ E. Hengge, Top. Curr. Chem. 51, 1 (1974).
- ¹⁸ H. Oberhammer, J. mol. Struct. **31**, 237 (1976).
- ¹⁹ H. C. Longuet-Higgins, Mol. Phys. 6, 445 (1963).
- ²⁰ J. Serre, Adv. Quantum Chem. 8, 1 (1974).
- ²¹ H. Bürger, Fortschr. Chem. Forsch. 9, 1 (1967).
- ²² P. R. Bunker, J. Chem. Phys. 47, 718 (1967).
- ²³ M. Pfeiffer und H. J. Spangenberg, Z. physik. Chem. 232, 47 (1966).
- ²⁴ J. L. Duncan, Spectrochim. Acta 20, 1807 (1964).
- ²⁵ A. Marchand und M. T. Forel, Bull. Soc. Chim. France 1975, 72.
- ²⁶ F. Höfler, Mh. Chem. 104, 694 (1973).
- ²⁷ E. Hengge und F. Lunzer, Mh. Chem. 107, 371 (1976).
- ²⁸ H. J. Becher und F. Höfler, Spectrochim. Acta 25 A, 1703 (1969).
- ²⁹ F. Höfler, Mh. Chem. 107, 411 (1976).
- ³⁰ C. Glidewell und G. M. Sheldrick, J. Chem. Soc. A 1971, 3127.
- ³¹ F. Höfler und E. Brandstätter, Mh. Chem. 106, 893 (1975).
- ³² F. Höfler, Ber. Bunsenges. phys. Chem. 78, 1246 (1974).

- ³³ C. G. Pitt und H. Bock, J. Chem. Soc. Chem. Comm. 1972, 28.
- ³⁴ H. Gilman und D. Wittenberg, J. organomet. Chem. 14, 95 (1968).
- ³⁵ A. G. Brook und H. Gilman, J. Amer. Chem. Soc. 76, 278 (1954).
- ³⁶ H. Gilman und G. E. Dunn, J. Amer. Chem. Soc. 73, 5077 (1951).

Korrespondenz und Sonderdrucke: Prof. Dr. F. Höfler Abteilung für Spektrochemie Institut für Anorganische Chemie Technische Universität Graz Stremayrgasse 16 A-8010 Graz Österreich